Alternative methods for modeling of the cure rate in survival studies

Vera Tomazella

Uniiversidade Federal de são Carlos-São Carlos-SP veratomazella@gmail.com

VIII Encontro dos Alunos de Pós-graduação em Estatística e Experimentação Agronômica

< ロ > < 同 > < 回 > < 三 > < 三

23/11/2018-ESALQ

1 / 39

Introduction

- A Brief Description of Existing Long-Term Models Standard mixture models Non-mixture model:Unified approach Defective Distributions
- 8 Recent Searches Paper 1 Paper 2

3

イロト イポト イヨト イヨト

Introduction

A Brief Description of Existing Long-Term Models Standard mixture models Non-mixture model:Unified approach Defective Distributions

3 Recent Searches Paper 1 Paper 2

- 3

・ロン ・聞と ・ヨン ・ヨン

Survival Analysis (SA) x Long-Term Survival Analysis (LTSA)

- SA: It is assumed that all experimental units ("individuals") present the event of interest.
- Long-Term Survival Analysis (LTSA):
 - In survival analysis studies in which there are a cure fraction are common.
 - With the fast development of medical treatments, the data in the population generally reveal that a proportion of patients can be cured
 - The cure fraction is the proportion of the observed individuals which, for some reason, are not susceptible to the event of interest.
 - These data sets may be applied in different areas such as in
 - Medicine recurrence of a cancer
 - 2 Social area {

 occurrence of divorces
 time until the birth of the first child

イロト 不得下 イヨト イヨト 二日

Specifying Censorship

- Features which are typically encountered in analysis of survival data:
 - individuals do not all enter the study at the same time
 - when the study ends, some individuals still haven't had the event yet
 - other individuals drop out or get lost in the middle of the study, and all we know about
 - them is the last time they were still 'free' of the event

Specifying Survival Time

Let $T \in \Re^+$ a random variable denoting survival time. The *T* distribution function can be written as::

$$F(t) = P(T \le t) = \int_0^t f(u) du$$

where f is the f.d.p of T.

We define the Survival Function, S(t), as the probability of an individual surviving a time greater than t, that is,

$$S(t) = 1 - F(t)$$

(日) (同) (三) (三)

Shape of the Survival Function

When $\lim_{t\to\infty} S(t) \neq 0$

Vera Tomazella (DEs-UFSCar)

23/11/2018-ESALQ 7 / 39

Improper Survival Function - ISF

 $S_{pop}(t) \equiv$ Population Survival Function (ISF)

$$S_{ extsf{pop}}(t) = 1 - \gamma + \int_t^\infty f(u) du$$
 , $\gamma \leq 1$

Properties:

- If $\gamma = 1 \Rightarrow S_{pop}(t) = S(t)$, that is, this class contains the usual FS of Survival Analysis,
- **2** $S_{pop}(0) = 1;$
- 4 $\lim_{t\to\infty} S_p(t) = 1 \gamma = p_0 \equiv \text{Cure Fraction.}$.

イロト イポト イヨト イヨト 二日

Application with Breast cancer data set

 The study came from a real-world medical data set collected at a hospital in Brazil from Feb/2011 to Oct/2013. These data contain information from 78 patients diagnosed with triple-negative breast cancer and treated with neoadjuvant chemotherapy.

Cutaneous Melanoma data set

The data set was collected by Eastern Cooperative Oncology Group from 1991 to 1995 on cutaneous melanoma to evaluate the postoperative treatment performance with a high dose of interferon alpha-2b to prevent the recurrence.

Figure 2: Kaplan-Meier estimated survival curve for data stratified by patient's gender with the number of patients at risk.

23/11/2018-ESALQ

10 / 39

Characteristics of the survival curve of long-term

- At the survival curve an asymptote is clearly reached
- There are Individuals NOT susceptible to the event of interest.
- High censoring rates.
- When $\lim_{t\to\infty} S(t) \neq 0$

イロト イポト イヨト イヨト

Introduction

A Brief Description of Existing Long-Term Models Standard mixture models Non-mixture model:Unified approach Defective Distributions

8 Recent Searches Paper 1 Paper 2

3

イロト イポト イヨト イヨト

Standard mixture models

• The pioneering work was presented by Boag (1949) and Berkson & Gage (1952);

イロト イポト イヨト イヨト

23/11/2018-ESALQ

- 3

13 / 39

• The survival function for the population $(S_{pop}(y))$ is given by $S_{pop}(y) = p + (1-p)S(y)$

S(y): Usual survival function (group of uncured)

- Se p = 1, então $S_{pop}(t) = S(t)$;
- S_{pop}(0) = 1;
- S_{pop}(t) é decrescente;

•
$$\lim_{t \to \infty} S_{pop}(t) = 1 - p$$
 (imprópria).

Non-mixture model:Unified approach

- Unified models have been proposed by Tsodikov et al. (2003) and Rodrigues et al. (2009).
 - *N* number of causes for the event of interest (latent) with $p_n = P[N = n]$ and $q_n = P[N > n]$, with n = 1, 2, ..., and $T = min\{Z_1, ..., Z_N\}$ where $T = \infty$ if N = 0 and Z_k , k = 1, ..., n represent the time of occurrence of the event of interest due to the *k* -th cause.
 - The population survival function is given by

$$\begin{split} S_{pop}(t) &= P[N=0] + P[Z_1 > t, Z_2 > t, ..., Z_N > t, N \ge 1] \\ &= P[N=0] + \sum_{n=1}^{\infty} P[N=n] P[Z_1 > t, Z_2 > t, ..., Z_N > t] \\ &= p_0 + \sum_{n=1}^{\infty} p_n S(t)^n \\ &= A[S(t)], \end{split}$$
(1)

A(.) is the generating function of the sequence p_n .

Vera Tomazella (DEs-UFSCar)

イロト イポト イヨト イヨト

Cure rate models: Unified approach

The density and risk functions associated with the long-term survival function are given, respectively, by

$$f_{pop}(t) = f(t) \frac{dA(s)}{ds}|_{s=S(t)}$$
⁽²⁾

イロト イポト イヨト イヨト

23/11/2018-ESALQ

15 / 39

and

$$h_{pop}(t) = \frac{f_{pop}(t)}{S_{pop}(t)} = \frac{f(t)\frac{dA(s)}{ds}|_{s=S(t)}}{S_{pop}(t)}.$$
(3)

Some distributions are widely used for probability-generating functions, such as Bernoulli, Binomial, Poisson, Negative Binomial and Geometry.

N has a Negative Binomial (NB) distribution

 We assume that the unobserved (latent) random variable (RV) N has a Negative Binomial (NB) distribution with probability mass function expressed as

$$P(N = n) = \frac{\Gamma(n + \alpha^{-1})}{n!\Gamma(\alpha^{-1})} \left(\frac{\alpha\theta}{1 + \alpha\theta}\right)^n (1 + \alpha\theta)^{-1/\alpha},$$
(4)

where $n = 0, 1, \ldots, \theta > 0$, $\alpha \ge -1$, $1 + \alpha \theta > 0$.

• The long-term SF for the RV T is given by

$$S_{\rho}(t;\theta,\alpha) = (1 + \alpha\theta(1 - S_{T}(t)))^{-1/\alpha}, \quad t > 0,$$
(5)

where $S_T(t)$ is the proper SF.

• We calculate the cure fraction p as

$$p = \lim_{t \to \infty} S_p(t; \theta, \alpha) = (1 + \alpha \theta)^{-1/\alpha}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Defective Distributions

• A distribution is called defective if the integral of its density function does not result in 1 but it results in a value $p \in (0, 1)$, when we change its domain

Figure 3: Example of a cumulative function of a defective distribution

- In a defective model it is possible to estimate a cure rate with the use of a natural improper distribution.
- Some defective distributions
 - Gompertz Defective distribution (rocha2014)
 - Inverse Gaussian Defective distribution (balka2009)
 - Marshall-Olkin family of defective model (rocha2017)
 - Kumaraswamy Family of defective model (rocha2015b)

Inverse Gaussian Defective Distribution

• The probability density, survival and hazard functions of the inverse Gaussian model are given by

$$g_0(t) = \frac{1}{\sqrt{2b\pi t^3}} \exp\left\{-\frac{1}{2bt} \left(1 - at\right)^2\right\},$$
 (6)

$$S_{0}(t) = 1 - \left[\Phi\left(\frac{-1 + at}{\sqrt{bt}}\right) + e^{2a/b}\Phi\left(\frac{-1 - at}{\sqrt{bt}}\right)\right],$$
(7)

$$h_{0}(t) = \frac{\frac{1}{\sqrt{2b\pi t^{3}}} \exp\left\{-\frac{1}{2bt} \left(1-at\right)^{2}\right\}}{1 - \left[\Phi\left(\frac{-1+at}{\sqrt{bt}}\right) + e^{2a/b}\Phi\left(\frac{-1-at}{\sqrt{bt}}\right)\right]}.$$
(8)

where a > 0, b > 0 and t > 0. $\Phi(\cdot)$ represents the cumulative distribution of the standard normal.

• The defective inverse Gaussian distribution is the inverse Gaussian distribution that allows negative values of a. When a < 0 the cure rate is calculated by

$$p = \lim_{t \to \infty} S_0(t) = \lim_{t \to \infty} 1 - \left[\Phi\left(\frac{-1 + at}{\sqrt{bt}}\right) + e^{2a/b} \Phi\left(\frac{-1 - at}{\sqrt{bt}}\right) \right] = (1 - e^{2a/b}) \in (0, 1).$$

1 Introduction

A Brief Description of Existing Long-Term Models Standard mixture models Non-mixture model:Unified approach Defective Distributions

8 Recent Searches Paper 1 Paper 2

3

イロト イポト イヨト イヨト

Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data

RESEARCH ARTICLE 🔂 Full Access

Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data

イロト イポト イヨト イヨト

23/11/2018-ESALQ

20 / 39

Jeremias Leão, Víctor Leiva 💌, Helton Saulo, Vera Tomazella

First published: 14 August 2018 | https://doi.org/10.1002/sim.7929 | Cited by: 1

Frailty models

- The frailty model is characterized by using a random effect, that is a non observable random variable, and it represents a generalization of the Cox model and it may be incorporated in the baseline hazard rate (HR) multiplicatively
- The conditional Harzard and survival functions are given by

$$h_{T|U=u_i}(t; \mathbf{x}) = u_i h_0(t) \exp(\mathbf{x}_i^{\top} \boldsymbol{\varphi}), \qquad (9)$$

$$S_{\mathcal{T}|U=u_i}(t; \boldsymbol{x}) = \exp(-u_i H_0(t) \exp(\boldsymbol{x}^\top \boldsymbol{\varphi})) \quad i = 1, \dots, n, \quad (10)$$

where *u* represents the frailty variable and $h_0(.)$ and $H_0(.)$ are baseline hazard rate and cumulative hazard rate respectively and *x* is observed variable

• To get the unconditional SF, we need to integrate out the frailty component as

$$S_{\mathcal{T}}(t) = \int_0^\infty \exp(-uH_0(t)\exp(\mathbf{x}^{\top}\varphi))f_U(u)\,\mathrm{d}u = Q(H_0(t))e^{(\mathbf{x}^{\top}\varphi)}.$$
 (11)

where $Q(\cdot)$ denotes the Laplace transform.

 An important point in Frailty models is the choice of the distribution for the Frailty variable. In this work we considered Birnbaum and Saunders distribus 23/11/2018-ESALQ 21 / 39

A parameterized version of the BS distribution

- Birnbaum and Saunders (1969), introduced a distribution to fatigue life data model.
- A RV U is BS distributed, $U \sim BS(\alpha, \beta)$ and the PDF is given by

$$f_{U}(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2\alpha^{2}} \left[\frac{u}{\beta} + \frac{\beta}{u} - 2\right]\right) \frac{u^{-3/2}[u+\beta]}{2\alpha\beta^{1/2}}, \quad u > 0,$$
(12)

where $\alpha > 0$ and $\beta > 0$ are shape and scale parameters respectively

• Santos-Neto et al. (2012) proposed BS distribution parameterized by its mean and precision. The shape parameters and precision parameters are given by

$$\delta = 2/\alpha^2 > 0 \tag{13}$$

and

$$\mu = \beta [1 + \alpha^2/2] > 0 \tag{14}$$

23/11/2018-ESALQ

22 / 39

A parameterized version of the BS distribution

• The PDF of the BS distribution parameterized $U \sim {
m RBS}(\mu,\delta)$ is given by

0

$$f_{U}(u) = \frac{\exp(\delta/2)\sqrt{\delta+1}}{4\sqrt{\pi\mu}u^{3/2}} \left[u + \frac{\delta\mu}{\delta+1} \right] \exp\left(-\frac{\delta}{4} \left[\frac{u\{\delta+1\}}{\delta\mu} + \frac{\delta\mu}{u\{\delta+1\}} \right] \right).$$
(15)

•
$$E[U] = \mu$$
 and $Var[U] = \frac{\mu^2}{(\delta + 1)^2 (2\delta + 5)}$

Figure 4: Plots of PDF, SF and HR of the BS distribution $U \sim \text{RBS}(\mu = 1, \delta)$.

A RBS frailty model for survival data

- We assume that the frailty U has a RBS distribution with parameters $\mu = 1$ and δ , where E[U] = 1 and $Var[U] = (2\delta + 5)/(\delta + 1)^2$. The variance quantifies the amount of heterogeneity among patients.
- The Laplace transform for the RBS distribution is given by

$$Q(s) = \frac{\exp\left(\frac{\delta}{2}\left(1 - \frac{\sqrt{\delta+4s+1}}{\sqrt{\delta+1}}\right)\right)\left(\sqrt{\delta+4s+1} + \sqrt{\delta+1}\right)}{2\sqrt{\delta+4s+1}}.$$
 (16)

• Evaluating (16) at $s = H_0(t)$, we get the unconditional SF and HR under the RBS frailty as

$$S_{\mathcal{T}}(t;\delta) = \frac{\exp\left(\frac{\delta}{2}\left(1 - \sqrt{\delta + 4H_0(t) + 1}/\sqrt{\delta + 1}\right)\right)\left(\sqrt{\delta + 4H_0(t) + 1} + \sqrt{\delta + 1}\right)}{2\sqrt{\delta + 4H_0(t) + 1}}.$$
(17)

$$h_{T}(t;\delta) = h_{0}(t) \left(\frac{\delta(\delta + \sqrt{\delta + 1}\sqrt{\delta + 4H_{0}(t) + 1} + 4H_{0}(t) + 3) + 2}{(\delta + 4H_{0}(t) + 1)(\delta + \sqrt{\delta + 1}\sqrt{\delta + 4H_{0}(t) + 1} + 1)} \right).$$
(18)

23/11/2018-ESALQ

24 / 39

Analyzing cutaneous melanoma data set

• In this application we assumed the regression structure.

 $\eta_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4}, \quad i = 1, \dots, 426.$

Table 1:ML estimates (with SE and *p*-value) of the indicated parameter for theNBCrBSF model with the melanoma data.

Parameter/Covariate name	Parameter	Estimate	SE	<i>p</i> -value
Dispersion/competing causes (NB)	α	8.0498	2.8105	-
Shape/baseline HR (Weibull)	κ	3.2591	0.6153	-
Scale/baseline HR (Weibull)	γ	6.1634	3.5862	-
Precision/frailty (BS)	δ	0.7918	3.5633	-
Constant	β_0	0.4727	0.5931	0.4254
Treatment	β_1	0.2232	0.1076	0.0381
Age	β_2	-0.0057	0.0037	0.1268
Gender	β_3	-0.1060	0.1136	0.3505
Nodule category	β_4	-0.6233	0.1891	0.0010

• The estimate frailty variance

$$\widehat{\operatorname{Var}}(U) = 2\widehat{\delta} + 5/(\widehat{\delta} + 1)^2 = 2.0506$$

イロト イポト イヨト イヨト

• To calculate the cure rate parameter for each patient we consider the logistic regression model defined as

$$p_{0_i} = rac{\exp(oldsymbol{x}_i^ opoldsymbol{eta})}{1+\exp(oldsymbol{x}_i^ opoldsymbol{eta})}, \quad i=1,\ldots,m.$$

Table 2: ML estimates (with estimated asymptotic SE and 95% confidence interval) of the cure fraction stratified by treatment, nodule category and patient's gender for the NBCrBSF model with the melanoma data.

Treatment	Nodule category	Gender	Estimate	SE	95% confidence interval
0	Absent	Female Male	0.6160 0.5907	0.1678 0.2359	(0.6001, 0.6319) (0.5683, 0.6131)
	Present	Female Male	0.4624 0.4362	0.1956 0.2240	(0.4438, 0.4810) (0.4149, 0.4575)
1	Absent	Female Male	0.6673 0.6433	0.2508 0.2966	(0.6435, 0.6911) (0.6151, 0.6715)
	Present	Female Male	0.5181 0.4917	0.2978 0.3357	(0.4898, 0.5464) (0.4598, 0.5236)

Figure 5: Overall SF fitted with the NBCrBSF model stratified by nodule category and patient's gender (A: absent and female, B: present and female, C: absent and male, D: present and male) for patients with no treatment = 0 (left) and with treatment = 1 (right), using melanoma data.

 We observed for example that the patient who did not receive treatment with absence of nodules and female has a cure rate equal to 0.61

23/11/2018-ESALQ

27 / 39

Diagnostic Analysis

• We carried out a diagnostic analysis based on local influence. note that cases #255, #290, #279 and #341 are detected as potentially influential observations under the considered perturbation schemes.

Figure 6: Index plots of C_i for α (left), $\boldsymbol{\xi} = (\delta, \gamma, \kappa)^{\top}$ (center) and $\boldsymbol{\beta}$ (right) with case-weight perturbation and melanoma data.

Conclusion

- We proposed a new methodology based on a cure rate model with frailty described by the reparamerized Birnbaum-Saunders distribution.
- The proposed methodology encompassed estimation and inference about the model parameters, as well as local influence diagnostics under different perturbation schemes.
- We illustrated the methodology with data of malignant melanoma. The empirical results showed the potentiality of this methodology

イロト イポト イヨト イヨト

23/11/2018-ESALQ

29 / 39

Main references

- Berkson J, Gage RP. Survival curve for cancer patients following treatment. Journal of the American Statistical Association 1952; 47: 501-515.
- Rodrigues J, Cancho VG, de Castro M, Louzada F. On the unification of longterm survival models. Statistics and Probability Letters 2009; 79: 753-759. Birnbaum, ZW, Saunders, SC (1969) A new family of life distributions. J. Appl. Prob., 6, 319-327.
- Leao J, Leiva V, Saulo H, Tomazella V. Birnbaum-Saunders frailty regression models: Diagnostics and application to medical data. Biom J. 2017; 59:291-314.
- Leiva V, Santos-Neto M, Cysneiros FJA, Barros M. Birnbaum-Saunders statistical modelling: A new approach. Statistical Modelling 2014; 14: 21-48.
- Santos-Neto M, Cysneiros FJA, Leiva V, Barros M. Reparameterized Birnbaum-Saunders regression models with varying precision. Electron J Stat. 2016; 10:2825-2855.

イロト 不得 トイヨト イヨト 二日

1 Introduction

2 A Brief Description of Existing Long-Term Models

Standard mixture models Non-mixture model:Unified approach Defective Distributions

3

イロト イポト イヨト イヨト

Defective models induced by gamma frailty term for survival data with cure fraction

イロト イポト イヨト イヨト

23/11/2018-ESALQ

32 / 39

Defective models induced by frailty term

Let V ~ Gamma(1/θ, 1/θ), with E(V) = 1 and Var(V) = θ (?). The Laplace transform of the gamma frailty distribution is expressed by

$$\mathcal{L}_g(s) = (1 + \theta s)^{-1/\theta}.$$
(19)

• The unconditional survival, density and hazard functions in the gamma frailty model are given by

$$S(t) = [1 - \theta \log S_0(t)]^{-1/\theta},$$
 (20)

$$f(t) = h_0(t) \left[1 - \theta \log S_0(t) \right]^{-1 - 1/\theta}, \qquad (21)$$

and

$$h(t) = h_0(t) \{1 - \theta \log S_0(t)\}^{-1}, \qquad (22)$$

イロト 不得下 イヨト イヨト 二日

23/11/2018-ESALQ

33 / 39

where $S_0(t)$ can be either proper or not proper survival function

Defective gamma-inverse Gaussian model

- Let S₀(t) be the Survival function of the defective inverse Gaussian model with parameters a < 0 and b > 0 and gamma frailty term
- The survival and hazard functions of the defective gamma-inverse Gaussian model are given by

$$S(t) = [1 - \theta \log S_0(t)]^{-1/\theta}$$

= $\left\{ 1 - \theta \log \left\{ 1 - \left[\Phi \left(\frac{-1 + at}{\sqrt{bt}} \right) + e^{\frac{2a}{b}} \Phi \left(\frac{-1 - at}{\sqrt{bt}} \right) \right] \right\} \right\}^{-1/\theta}$ (23)

$$h(t) = \frac{\frac{1}{\sqrt{2b\pi t^3}} \exp\{-\frac{1}{2bt}(1-at)^2\}}{1 - \left[\Phi\left(\frac{-1+at}{\sqrt{bt}}\right) + e^{2a/b}\Phi\left(\frac{-1-at}{\sqrt{bt}}\right)\right]} \left\{1 - \theta\log\left[1 - \left[\Phi\left(\frac{-1+at}{\sqrt{bt}}\right) + e^{2a/b}\Phi\left(\frac{-1-at}{\sqrt{bt}}\right)\right]\right]\right\}^{-1}$$
(24)

• We calculate the cure fraction *p* for the defective gamma-inverse Gaussian model as

•
$$p = \lim_{t \to \infty} S(t) = \lim_{t \to \infty} [1 - \theta \log S_0(t)]^{-1/\theta} = [1 - \theta \log (1 - e^{2a/b})]^{-1/\theta}$$

Analyzing the breast cancer data set

• In this application we assumed the regression structure.

$$h(t|V, \mathbf{x}) = V h_0(t) e^{\mathbf{x}^\top \boldsymbol{\beta}},$$

We considered the model only with the covariate N (tumor location), N = 0 (neigboring lymph nodes do not have cancer)and N = 1 (neigboring lymph nodes have cancer)

Table 3: Maximum likelihood estimates of the gamma-inverse Gaussian model with the covariate Location of Tumor N = 0 and N = 1

Parameter	Estimate	Std. Error	Lower 95% CI	Upper 95% CI
а	-5.1892	2.588	-10.2616	-0.1168
Ь	1.9289	0.6592	0.6369	3.2209
θ	-0.801	4.1804	-8.9945	7.3925
β_0	3.6569	2.5964	-1.4319	8.7456
β_1	1.0042	0.9295	-0.8177	2.8261
p_0	0.8245	0.0951	0.6380	0.9999
ρ_1	0.5384	0.0837	0.3743	0.7025

Note that a = -5.1892. In this case we have a defective gamma-inverse Gaussian model, \sim

Recent Searches

Paper 2

- The cure fraction is $p = \left\{1 \theta e^{x\beta} \log\left(1 e^{\frac{2s}{b}}\right)\right\}^{-\frac{1}{\theta}}$
- The proportion of cured individuals was estimated in $p_0 = 0.82$ for the group N = 0(red line) and $p_1 = 0.53$, for the group N = 1 (green line)

Survival curves of the gamma-inverse Gaussian model (N Figure 7: and Vera Tomazella (DEs-UFSCar) 23/11/2018-ESALQ 36 / 39

Conclusion

- Once you have a defective model, it will lead to a cure fraction when the estimation procedure presents a value out of the usual range of parameters.
- We showed that when a > 0, we have the frailty models, gamma-inverse Gaussian..
- When we have *a* < 0, we have the defective inverse Gaussian induced by the frailty gamma.
- We showed that we can induce new defective distributions when using the gamma frailty term,
- We illustrated the methodology with data of breast cancer. The empirical results showed the potentiality of this methodology

イロト イポト イヨト イヨト

23/11/2018-ESALQ

- 32

37 / 39

Main references

- Balka, J., Desmond, A. F. & McNicholas, P. D. (2009). Review and implementation of cure models based on first hitting times for wiener processes. Lifetime Data Analysis, 15(2), 147-176.
- Rocha, R., Tomazella, V. & Louzada, F. (2014). Inferência clássica e Bayesiana para o modelo de fração de cura Gompertz defeituoso. Revista Brasileira de Biometria, 32(1), 104-114.
- Rocha, R., Nadarajah, S., Tomazella, V., Louzada, F. & Eudes, A. (2015). New defective models based on the Kumaraswamy family of distributions with application to cancer data sets. Statistical methods in medical research, pages 1-15.
- Rocha, R., Nadarajah, S., Tomazella, V. & Louzada, F. (2017). A new class of defective models based on the Marshall-Olkin family of distributions for cure rate modeling. Computational Statistics & Data Analysis, 107, 48-63.
- Wienke, A. (2003). Frailty models. Wiley StatsRef: Statistics Reference Online.

イロト 不得下 イヨト イヨト 二日

THANK YOU!

・ロン ・聞と ・ヨン ・ヨン

23/11/2018-ESALQ

э

39 / 39