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Survival Analysis (SA) x Long-Term Survival Analysis
(LTSA)

e SA: Itis assumed that all experimental units ("individuals”) present the event
of interest.

e Long-Term Survival Analysis (LTSA):

e In survival analysis studies in which there are a cure fraction are common.

e With the fast development of medical treatments, the data in the pop-
ulation generally reveal that a proportion of patients can be cured

e The cure fraction is the proportion of the observed individuals which, for
some reason, are not susceptible to the event of interest.

e These data sets may be applied in different areas such as in

@ Medicine - recurrence of a cancer

® Social area { - occurrence of divorces
- time until the birth of the first child
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Specifying Censorship

o Features which are typically encountered in analysis of survival data:

e individuals do not all enter the study at the same time

e when the study ends, some individuals still haven’t had the event yet

e other individuals drop out or get lost in the middle of the study, and all
we know about

e them is the last time they were still 'free’ of the event
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- lnodiion
Specifying Survival Time

Let T€ R* a random variable denoting survival time. The T distribution function
can be written as::

F(t)=P(T < t)= [ f(u)du

where f is the f.d.p of T.
We define the Survival Function, S(t), as the probability of an individual surviving
a time greater than t, that is,

S(t)=1— F(t)
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Introduction

Shape of the Survival Function

S(0)=1

St)
S(e) = 0

When lim; 0 S(t) #0
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Introduction

Improper Survival Function - ISF

Spop(t) = Population Survival Function (ISF)

Spop(t) = 1‘7"’];00 f(u)du v <1

Properties:

@ Ify=1= Sp,(t) = S(t), thatis, this class contains the usual FS of Survival
Analysis,

2] SPOP(O) =1
© Spop(t) L t;
O limi55,(t) =1 —~ = pyg = Cure Fraction. .
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Introduction

Application with Breast cancer data set

e The study came from a real-world medical data set collected at a hospital
in Brazil from Feb/2011 to Oct/2013. These data contain information from
78 patients diagnosed with triple-negative breast cancer and treated with

neoadjuvant chemotherapy.
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Figure 1. Kaplan-Meier estimated survival curve and cumulative hazard function.
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Cutaneous Melanoma data set
The data set was collected by Eastern Cooperative Oncology Group from 1991 to

1995 on cutaneous melanoma to evaluate the postoperative treatment performance
with a high dose of interferon alpha-2b to prevent the recurrence.
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Figure 2:  Kaplan-Meier estimated survival curve for data stratified by patient’s
gender with the number of patients at risk.
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Introduction

Characteristics of the survival curve of long-term

At the survival curve an asymptote is clearly reached

There are Individuals NOT susceptible to the event of interest.

High censoring rates.

When lim; 0 S(t) #0
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A Brief Description of Existing Long-Term Models IRSIENETG RN ToL S

Standard mixture models

e The pioneering work was presented by Boag (1949) and Berkson & Gage
(1952);

-
ndo curado

1-p

Populagio

p I—— curado —— @ Y=-==

e The survival function for the population (Spop(y)) is given by
Spop(y) = P+ (1 = p)S(y)
S(y): Usual survival function (group of uncured)
e Se p=1, entdo Syep(t) = S(t);
* Spop(0) = 1;
e Spop(t) € decrescente;
e lim Syop(t) =1 — p (imprépria).
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A Brief Description of Existing Long-Term Models Non-mixture model:Unified approach

Non-mixture model:Unified approach

o Unified models have been proposed by Tsodikov et al. (2003) and Rodrigues
et al. (2009).

e N number of causes for the event of interest (latent) with p, = P[N = n]
and g, = P[N > n], with n=1,2,..., and T = min{Z, ..., Zy} where
T =00 if N=0and Z, kK =1,..., n represent the time of occurrence
of the event of interest due to the k -th cause.

e The population survival function is given by

Spop(t) = PIN=0]+PlLHr>t, 2 >t,....2y>t,N>1]
= PIN=01+) PIN=nP[Zy>t,Zs > t,... 2y > 1]
n=1
= po+ ans(t)n
n=1
= A[S(1)], (1)

A(.) is the generating function of the sequence p,.
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A Brief Description of Existing Long-Term Models Non-mixture model:Unified approach

Cure rate models: Unified approach

The density and risk functions associated with the long-term survival function are
given, respectively, by

fenlt) = F(O A, @

and

foon(t) _ F(1) 5 smst0 3)
5pop(t) SPOP(t)

hpop(t) =

Some distributions are widely used for probability-generating functions, such as
Bernoulli, Binomial, Poisson, Negative Binomial and Geometry.
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Non-mixture model:Unified approach
N has a Negative Binomial (NB) distribution

o \We assume that the unobserved (latent) random variable (RV) N has a Neg-
ative Binomial (NB) distribution with probability mass function expressed as

P(N=n)=

Mn+al ad \" o
IS!/_—E_Ozl)) <1+a0) (1+ad)7He, (4)

where n=0,1,...,0 >0, a> -1, 1+ af > 0.
o The long-term SF for the RV T is given by

Sp(t;0,0) = (1+ab(1 — S7(1))) "V, t>0, (5)

where St(t) is the proper SF.

e We calculate the cure fraction p as

_ . _ -1/«
p= Jim S,(t:0,0) = (1 + a6)
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A Brief Description of Existing Long-Term Models Defective Distributions

Defective Distributions

o A distribution is called defective if the integral of its density function does not
result in 1 but it results in a value p € (0, 1), when we change its domain

Cumulative function

Figure 3: Example of a cumulative function of a defective distribution

o In a defective model it is possible to estimate a cure rate with the use of a
natural improper distribution.

e Some defective distributions

o Gompertz Defective distribution ( rocha2014)

e Inverse Gaussian Defective distribution (balka2009)

e Marshall-Olkin family of defective model ( rocha2017)
o Kumaraswamy Family of defective model (rocha2015b)
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A Brief Description of Existing Long-Term Models Defective Distributions

Inverse Gaussian Defective Distribution

® The probability density, survival and hazard functions of the inverse Gaussian model
are given by

go(t) = \/ﬁexp{ bt (1—at)? } (6)

s =1 [0 (2 ) o (S 2200)] 0

ho(t) = ﬁexp{—%bt(l—at)z} ‘ "
1-— [q> (7\1/Eat> + e2a/bd (7\1/1’7“)]

where 2 > 0, b > 0 and t > 0. ®(-) represents the cumulative distribution of the
standard normal.

® The defective inverse Gaussian distribution is the inverse Gaussian distribution that
allows negative values of a. When a < 0 the cure rate is calculated by

— i — _ —l+at 2a/b —1—at _ _ J2a/b
pftlrgoso(t)ftingol [¢( \/E)-i-e ® N =(1-¢e")€e(0,1).
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Incorporation of frailties into a cure rate regression model
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Paper 1
Frailty models

The frailty model is characterized by using a random effect, that is a non ob-
servable random variable, and it represents a generalization of the Cox model
and it may be incorporated in the baseline hazard rate (HR) multiplicatively

The conditional Harzard and survival functions are given by
hru=u (t; x) uiho(t) exp(x; "), (9)
STiu=u(t;x) = exp(—ujHo(t) exp(x')) i=1,...,n, (10)

where u represents the frailty variable and ho(.) and Hy(.) are baseline hazard
rate and cumulative hazard rate respectively and x is observed variable

To get the unconditional SF, we need to integrate out the frailty component
as

St(t) = /O‘X’ exp(—uHo(t) exp(x T @))fu(u) du = Q(Ho(t))e* #). (1)

where Q(-) denotes the Laplace transform.

An important point in Frailty models is the choice of the distribution for the

Frailty variable. In this work we considered Birnbaum and Saunders distribu-
Vera Tomazella (DEs-UFSCar) 23/11/2018-ESALQ 21 /39



A parameterized version of the BS distribution

e Birnbaum and Saunders (1969), introduced a distribution to fatigue life data
model.

e ARV U is BS distributed, U ~ BS(«, ) and the PDF is given by

1 1 —3/2
fU(u):EeXP(_E [%—&—%—2})%, u>0, (12)

where a > 0 and 8 > 0 are shape and scale parameters respectively

e Santos-Neto et al. (2012) proposed BS distribution parameterized by its mean
and precision. The shape parameters and precision parameters are given by

§=2/a*>>0 (13)

and

p=p[l+a?/2] >0 (14)
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A parameterized version of the BS distribution

e The PDF of the BS distribution parameterized U ~ RBS(p,d) is given by

exp(8/2)v/3 + 1 {H Sp }exp (_g [u{5+1}Jr Sp D (15)

fu(u) =
u() 4, /mpud/? §+1 4 S u{d +1}

12

(6 +1)*(26 +5)

e E[U] = p and Var[U] =

Figure 4. Plots of PDF, SF and HR of the BS distribution U ~ RBS(u = 1, 6).
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Paper 1
A RBS frailty model for survival data

e We assume that the frailty U has a RBS distribution with parameters y =1
and 4, where E[U] = 1 and Var[U] = (2§ + 5)/(6 + 1)2. The variance
quantifies the amount of heterogeneity among patients.

e The Laplace transform for the RBS distribution is given by
" exp (g (1— Voiasil (;‘Tsjl)) (Vo+as+1+5+1)
s) = .
2vVo+4s+1

e Evaluating (16) at s = Hy(t), we get the unconditional SF and HR under the
RBS frailty as

(16)

exp (g (1 — /ST aHo(t) + 1/VE + 1)) (\/5 TaH(H) +1+ 3+ 1)

S7(t0) = N ETTAOES]
(17
br(£:8) = ho(®) ( 5(6 + S+ 11/0 + 4Ho(t) + 1 + 4Ho(t) + 3) + 2 ) ' (18)
(6 +4Ho(t) + 1)(6 + V3 + 1/5 + 4Ho(t) + 1 + 1)
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Analyzing cutaneous melanoma data set

e In this application we assumed the regression structure.
ni = Bo + Pixin + Paxiz + Bsxiz + Baxia,

i=1,...,426.

Table 1: ML estimates (with SE and p-value) of the indicated parameter for the
NBCrBSF model with the melanoma data.

Parameter/Covariate name Parameter  Estimate SE p-value
Dispersion/competing causes (NB) oY 8.0498 2.8105 -
Shape/baseline HR (Weibull) K 3.2591 0.6153 -
Scale/baseline HR (Weibull) ¥ 6.1634  3.5862 -
Precision /frailty (BS) ) 0.7918 3.5633 -
Constant Bo 0.4727 0.5931 0.4254
Treatment b1 0.2232 0.1076  0.0381
Age B2 —0.0057 0.0037  0.1268
Gender B3 —0.1060 0.1136  0.3505
Nodule category Ba —0.6233  0.1891 0.0010

e The estimate frailty variance

Var(U) = 26 +5/(8 + 1)2 = 2.0506
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e To calculate the cure rate parameter for each patient we consider the logistic
regression model defined as
exp(x;' B)

=t 7 =1
% +exp(x,"B)’ :

geeey

Table 2. ML estimates (with estimated asymptotic SE and 95% confidence in-
terval) of the cure fraction stratified by treatment, nodule category and patient's
gender for the NBCrBSF model with the melanoma data.

Treatment  Nodule category  Gender  Estimate SE 95% confidence interval

0 Absent Female 0.6160 0.1678 (0.6001, 0.6319)
Male 0.5907 0.2359 (0.5683,0.6131)

Present Female  0.4624  0.1956 (0.4438, 0.4810)

Male 0.4362 0.2240 (0.4149, 0.4575)

1 Absent Female  0.6673  0.2508 (0.6435,0.6911)
Male 0.6433 0.2966 (0.6151,0.6715)

Present Female 0.5181 0.2978 (0.4898,0.5464)

Male 0.4917 0.3357 (0.4598, 0.5236)

Vera Tomazella (DEs-UFSCar) 23/11/2018-ESALQ 26 / 39



04

02

02

00
L
00

Figure 5:  Overall SF fitted with the NBCrBSF model stratified by nodule category
and patient’s gender (A: absent and female, B: present and female, C: absent and
male, D: present and male) for patients with no treatment = 0 (left) and with
treatment = 1 (right), using melanoma data.

o \We observed for example that the patient who did not receive treatment with
absence of nodules and female has a cure rate equal to 0.61
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Diagnostic Analysis

e We carried out a diagnostic analysis based on local influence. note that
cases #255, #290, #279 and #341 are detected as potentially influential
observations under the considered perturbation schemes.
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Figure 6: Index plots of C; for a (left), & = (6,,) " (center) and 3 (right) with
case-weight perturbation and melanoma data.
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Conclusion

o We proposed a new methodology based on a cure rate model with frailty
described by the reparamerized Birnbaum-Saunders distribution.

e The proposed methodology encompassed estimation and inference about the
model parameters, as well as local influence diagnostics under different per-
turbation schemes.

o We illustrated the methodology with data of malignant melanoma. The em-
pirical results showed the potentiality of this methodology
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Defective models induced by frailty term

e Let V ~ Gamma(1/6,1/6), with E(V) = 1 and Var(V) = 0 (?). The Laplace
transform of the gamma frailty distribution is expressed by

Lg(s) = (1+6s)~Y°. (19)

e The unconditional survival, density and hazard functions in the gamma frailty
model are given by

S(t) = [1 - flog So(t)] (20)
F(t) = ho(t) [1 — Olog So(t)] /7, (21)

and
h(t) = ho(t) {1 — flog So(t)} . (22)

where Sp(t) can be either proper or not proper survival function
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Defective gamma-inverse Gaussian model

e Let Sp(t) be the Survival function of the defective inverse Gaussian model
with parameters a < 0 and b > 0 and gamma frailty term

e The survival and hazard functions of the defective gamma-inverse Gaussian

model are given by

S(t) = [1—0logSo(t)] "’

h(t) ﬁ exp{fﬁ(lfat)z}
= —1ta 1
1= o (=78t ) rererbo (=22

{19|og{1 {cb <i/%"t) +e2;¢(

7 {1—9|og [1— [cb(

—1+at

NG

) 4 e2a/bgp ( —at

N e

(24)

o We calculate the cure fraction p for the defective gamma-inverse Gaussian

model as
o p=limisoo S(t) = limis o0 [1
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Paper 2
Analyzing the breast cancer data set

e In this application we assumed the regression structure.
T
h(t|V,x) = V ho(t)e* P,

We considered the model only with the covariate N (tumor location), N =0
( neigboring lymph nodes do not have cancer )and N =1 (neigboring lymph
nodes have cancer )

Table 3:  Maximum likelihood estimates of the gamma-inverse Gaussian model
with the covariate Location of Tumor N=0and N =1

Parameter Estimate Std. Error Lower 95% ClI  Upper 95% ClI
a -5.1892 2.588 -10.2616 -0.1168
b 1.9289 0.6592 0.6369 3.2209
0 -0.801 4.1804 -8.9945 7.3925
Bo 3.6569 2.5964 -1.4319 8.7456
b1 1.0042 0.9295 -0.8177 2.8261
Po 0.8245 0.0951 0.6380 0.9999
p1 0.5384 0.0837 0.3743 0.7025
Note that a = —5.1892. In this case we have a defective gamma-inverse Gaussian model.
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® The cure fractionis p= 41 —60e log (1 —e®

® The proportion of cured individuals was estimated in py = 0.82 for the group N =0
(red line) and p1 = 0.53, for the group N =1 (green line)
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Figure 7:  Survival curves of the gamma-inverse Gaussian model (N = 0 and
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Conclusion

® Once you have a defective model, it will lead to a cure fraction when the estimation
procedure presents a value out of the usual range of parameters.

® We showed that when a > 0, we have the frailty models, gamma-inverse Gaussian..

® When we have a < 0, we have the defective inverse Gaussian induced by the frailty
gamma.

® \We showed that we can induce new defective distributions when using the gamma
frailty term,

e We illustrated the methodology with data of breast cancer. The empirical results
showed the potentiality of this methodology
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